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Characterization of a Highly Negative and
Labile Binding Protein Induced in
Euglena gracilis by Cadmium
by David J. Gingrich,* Daniel N. Weber,t C. Frank Shaw,*§
Justine S. Garvey,* and David H. Petering*

The physiochemical properties and physiological significance of the cadmium-binding protein (CdBP)
of the algae Euglena gracilis have been studied. Following in vivo exposure of cells to 0.4 or 1.3 ,ug/mL
of Cd2", all the cytosolic Cd is bound to high molecular weight species. At 4.7 ,ug/mL, appreciable CdBP
has formed in cells grown under illumination or in the dark. An analogous ZnBP could not be isolated
from control or Zn-exposed (20 ,ug/mL) cells, but zinc and a trace of copper were bound to the CdBP when
2-mercaptoethanol (2-ME) is added to the homogenates of Cd-treated cells and the buffers used during
isolation. The large pool of very low molecular weight zinc species previously reported is increased when
cells are exposed to high cadmium levels. Two distinct species, BP-1 and BP-2 are resolved by ion-exchange
chromatography on DEAE-Sephadex. Unusually high conductivities (25 and 40 mSiemen) are required to
displace them, indicating that they are very negatively charged proteins at pH 8.6. The pH for half-titration
of bound Cd2' is between 5 and 6. EDTA (0.4 M) and the CdBP isolated by gel-exclusion chromatography
react biphasically with pseudo-first-order rate constants of 4 ± 3 x 10-4 sec' and 7 ± 2 x 10' sec'.
Neither form of the CdBP cross-reacts with antibodies to rat liver metallothionein (MT) antibodies. The
structural, chemical, and functional differences between the Euglena CdBPs and mammalian MTs are
discussed.
When cells are exposed to high levels of Cu (5 or 10 ,ug/mL), a CuBP is induced, and the very low

molecular weight zinc band is depleted. Their copper-rich cytosol has a green-black color which is lost
upon oxidation.

Introduction such as fish (6), crustacea (7), and various microorga-
The reactions of metals with cells are important in

understanding the essential metal metabolism, environ-
mental metal intoxication, and the mechanism of action
of metallodrugs. Zinc and cadmium metabolism in Eu-
glena gracilis have been studied extensively as a model
for human and mammalian cells (1-4). These cells show
characteristic zinc and cadmium antagonism which is
common to most species. However, a recent examination
of the biochemistry of zinc and cadmium in Euglena gra-
cilis found significant differences from that ofmammalian
cells such as the Ehrlich ascites tumor cell (5).
Most striking was the finding that up to 80% of the

cytosolic zinc was present as a very low molecular weight
species. In mammalian cells, metallothionein-bound zinc
is the physiologically active form, whereas in Euglena
gracilis, the very low molecular weight form ofzinc seems
to be related to the zinc status of the cells (5).

Metal-inducible binding proteins in lower organisms
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nisms (8,9) vary greatly in chemical and physical prop-
erties among themselves and in comparison to mammal-
ian metallothioneins (MTs). In contrast to the
multiplicity of invertebrate binding proteins (BPs), MTs
from numerous mammalian species have a highly con-
served amino acid sequence and similar properties (10).
Examination of the structure and chemical reactivity of
BPs from lower organisms will elucidate their functions
and mechanisms of reaction in metal metabolism, and by
contrast will help to clarify the structure-function re-
lationships of MTs. The Cd-inducible BP ofEuglena gra-
cilis was found to have a smaller apparent molecular
weight and more negative charge than MTs, and to re-
semble MTs in having a high cysteine content and low
aromatic amino acid content.

In this paper we report further investigations of the
chemical properties and physiological significance of the
CdBP of Euglena gracilis and some results on exposure
of these cells to copper.

Methods and Materials
Media

All cultures were maintained by using the modified
medium of Hutner et al., with MnCl2 substituted for
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MnSO4 and glutamic acid for ammonium glutamate as
previously described (5). The media were sterilized by
autoclaving after the pH was adjusted to 3.5 using 6 M
KOH. Zinc-sufficient (Zn +) and zinc-deficient (Zn -) me-
dia were identical except for the withholding of zinc from
the (Zn -) medium. (Zn +) medium contained 1 jig Zn/
mL and (Zn-) medium less than 0.01 jig Zn/mL as
measured by atomic absorption. Cadmium, zinc, or cop-
per levels above normal media levels wre achieved by the
addition of aqueous solutions of CdC12, ZnC12, or CuC12
either before or after autoclaving.

Cultures
Euglena gracilis (Klebs), "z" strain, #753 was pur-

chased from the Culture Collection of Algae at the Uni-
versity of Texas at Austin.

Unless otherwise noted, individual experiments were
begun using inoculations of stock culture cells in the log
phase of growth. In experiments requiring multiple cul-
tures, one large culture was made and then divided into
250 mL cultures in cotton-plugged 500 mL Erlenmeyer
flasks and placed in a shaker bath maintained at 26 to
27°C under a 20-W GE F20T12-CW fluorescent tube ap-
proximately 40 cm overhead. Cultures grown in the ab-
sence of light ("dark-grown") were set up identically and
wrapped in aluminum foil to exclude light.

Cell counts were obtained by using an American Op-
tical Series 10 Microstar microscope at 450 x magnifi-
cation with an American Optical Spencer Bright Line
Phase Hemacytometer #1475 with Neubauer ruling.

Cells Exposed to Elevated Copper Levels
The effects of elevated medium copper levels upon cy-

tosolic copper were investigated by the addition of copper
as aqueous CuCl2. The normal copper level in the medium
is 0.064 ,ug/mL (1 x 10-6 M). Inoculations to 1 x 104
cells/mL were made from stock cultures and copper was
then added at 10 ,ig/mL (1.6 x 10-4 M) or 5 pLg/mL (7.8
x 10-5 M). The cells were harvested after 4 or 10 days
of growth and the cytosol chromatographed over a Seph-
adex G-75 column.

Cytosol Preparation
Cells were typically harvested by centrifugation at

3000g for 5 min. This was followed by two or three wash-
ings which consisted of resuspending the pelleted cells
in a 10 mL of 0.15 M KCI per gram of cells and recen-
trifuging at 3000g. The cells were then resuspended in
0.15 M KC1, 0.05 M Tris buffer, pH 8.6, at room tem-
perature, and sonicated in a 7 mL tube in an ice-water
bath and a Sonifier Disruptor 200 for 2 min at 60% duty
and 75 W of power. A 5-mL portion of homogenization
medium was used per gram of cells in a 7-mL tube. The
preparation was kept between 0 and 4°C after sonication
and, unless otherwise noted, 5 to 10 mM 2-mercaptoeth-
anol (2-ME) was added prior to sonication to retard ox-
idation of the metal-binding protein and subsequent re-

distribution of metals, as has been observed in
mammalian systems (11). The sonicate was centrifuged
at 40,000g for 20 min, resulting in a compacted pellet, a
supernatant and a small, top layer consisting of fluffy
material. In cells grown on high cadmium levels, the top
layer has a rubberlike consistency The middle, super-
natant layer was then ultracentrifuged at 100,000g for 1
to 1.5 hr, and a similar set of three layers resulted. The
middle layer was carefully removed and was designated
the cytosol fraction. In some preparations, Cd + was
added to the media before fractionation, in order to dis-
place Zn2+ from the BP fractions.

Metal Analyses
Measurements of metal concentrations were made us-

ing either a Perkin-Elmer 360 or an Instrumentation Lab-
oratories (AA/AE) 357 spectrophotometer with D2 back-
ground correction applied for cadmium and zinc.
Calibration standards were made using aqueous dilutions
of 1000 pLg/mL atomic absorption standards obtained
from Fisher. Whenever appropriate, dilutions were made
using glass distilled water.

Electron Paramagnetic Resonance
Electron paramagnetic resonance (EPR) spectra of cy-

tosol prepared from cells grown in medium containing 10
,ug/mL copper were obtained by using a Varian E-3 EPR
spectrometer. The field was set at 3017 G, and 4-min scans
of frozen cytosol were recorded. Diphenylpicrylhydrazyl
(DPPH) was used as a marker. The frozen samples were
prepared by sealing the end of a glass tube with parafilm,
filling the tube with cytosol, and immersing the tube into
liquid nitrogen. The solid pellet formed was then (after
slight warming) transferred to an EPR tube, and the
spectrum was recorded. The sample was removed from
the EPR tube, allowed to thaw, refrozen, and additional
spectra obtained at selected times.

Gel Chromatography
The fractionation of cytosolic species was generally ac-

complished by applying the sample to a 2.5 x 60 cm
Sephadex G-75 column at 4 to 7°C, and eluting with 0.05
M Tris buffer, pH 8.6 (room temperature). The resulting
fractions were analyzed for metal content by atomic ab-
sorption via direct aspiration into the flame. The columns
were calibrated by using blue dextran (MW 2,000,000),
myoglobin (MW 17,000), horse kidney or rabbit liver me-
tallothionein (MW 6,000; apparent MW 10,000 due to its
elliptical shape), K3Fe(CN)6 and Na+. Elution positions
are reported as Kd, the distribution coefficient. Kd =
(Ve - Vo)/V8, where VO is the void volume (considered
here as the elution volume of blue dextran), Ve is the
elution volume of the species of interest, and V. is the
volume of solvent inside the gel and available to very small
molecules (V8 = VO - VNa').
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Ion-Exchange Chromatography
DEAE-Sephadex-A-25 ion-exchange chromatography

was performed on the pooled, cadmium-containing,
10,000-dalton peak obtained from Sephadex columns.
Early trials demonstrated that no cadmium-containing
species eluted from the column until the conductivity
reached at least 15 mSeiman. Consequently, the linear
gradients used thereafter generally consisted of either
0.1 M to 0.4 M KCI, or 0.15 to 0.6 M KCI, in 0.05 M Tris
buffer, pH 8.6, or alternately from 0.05 M Tris containing
0.2 M KCI to 0.5 M Tris containing 0.2 M KCI. Some
columns were run with 10 mM ascorbic acid or 1 mM 2-
ME added to the gradient buffers in efforts to stabilize
the protein during this procedure. The integrity of the
gradients was monitored using a Radiometer-Copen-
hagen CDM3 conductivity meter equipped with a type
CDC 314 cell.

Reaction of EDTA with CdBP
Sephadex G-50 CdBP fractions were concentrated us-

ing ultrafiltration, reapplied to a Sephadex G-75 column,
and eluted with 0.05 M Tris, pH 8.6, buffer. A series of
samples was prepared that contained 0.2 mL 2 M KCl
and 3.77 mL of CdBP having a Cd concentration of 4.0
,ug/mL. These samples were kept at -20°C (approxi-
mately 1 week) until the reactions were performed. The
reactions were initiated by the addition of sufficient
aqueous EDTA solution to 1.985 mL of the CdBP sample,
yielding 0.4 mM EDTA in the final reaction mixture. The
blank consisted of 0.1 mL 2 M KCl, 1.885 mL of Tris
buffer and 0.015 mL of the EDTA solution. The reaction
mixture was then transferred to a 1-mL cuvet within 30
sec and the course of the reaction was monitored at 254
nm over time. Due to their long duration, the reactions
were monitored continuously for roughly 5 hr and then
periodically at later time points. Four repetitions using
two independent CdBP samples were performed. The
data were analyzed by plotting the log (Ao. - A,) versus
time.

Radioimmunoassay
Samples of CdBP from Sephadex G-50 fractions and

CdBP-1 and CdBP-2 from DEAE-Sephadex A-25 frac-
tions were prepared by transferring aliquots appropri-
ately diluted with glass-distilled water into small vials
such that each vial contained 1.2 to 2.8 x 10-4 mole of
protein. The estimations of protein were made by meas-
uring the Zn, Cu, and Cd content and assuming the ac-
cepted mammalian values of 7 g-atoms of Zn or Cd and
10 g-atoms Cu bound per mole of metallothionein. The
samples were lyophilized and sent to Syracuse University
They were redissolved in doubly distilled H20, and ap-
propriate serial dilutions were made and assayed in a
double-antibody radioimmunoassay (RIA) following a
protocol as previously described (12,13). Both the '5I-
labeled antigen and a reference antigen were prepared
from the same rat liver Cd,Zn-thionein. This isoform is

known to be cross-reactive with various mammalian me-
tallothioneins. Inverse variance weighted standard
curves were developed from the data following established
protocols (14). Changes in the sequence or in conforma-
tion affecting the principal determinants of metallothi-
onein (15), and thus the affinity of the altered determi-
nant for the primary antibody, may be evaluated in terms
of either changes in slopes of the standard curves with
respect to that of the reference isoform or in terms of
changes in concentration of the competing antigen re-
quired to reduce the fraction bound of labeled antigen to
0.5.

Results
Isolation of CdBP
CdBP for physiochemical studies was isolated from

Euglena gracilis grown in culture media containing 5
,ug/mL of Cd=+ and following procedures previously de-
scribed (5). Fractionation of the cytosol (100,000g su-
pernatant fraction) over Sephadex G-75 yielded a Cd-rich
band, which also contained zinc and a trace of copper
under some conditions. After experimenting with a va-
riety of isolation procedures (aerobic, N2 atmosphere,
added ascorbate or 2-mercaptoethanol), it was found that
maintaining a 1 mM concentration of 2-mercaptoethanol
(2-ME) in the buffers throughout the preparation yielded
the most reproducible results. Rapid handling during all
steps subseqeunt to the cell sonication was necessary to
obtain good yields of the crude BP after gel exclusion
chromatography.
Even with the most stringent precautions, loss of the

zinc from the BP was observed in subseqeunt steps.
Therefore, in later preparations ofBP for physiochemical
studies, Cd2" was added to the cytosol to displace Zn2+
from the BP and yield a more stable all-cadmium BP
preparation. The presence of zinc in the BP when 2-ME
is used, but not in its absence, demonstrates that the
enormous very low molecular weight pool of zinc in Eu-
glena gracilis is not an artifact due to extraction by 2-
ME of Zn from the BP or high molecular weight zinc
pools (Table 1).

Elution of the BP from DEAE-Sephadex ion-exchange
resin (Fig. 1) required high salt concentrations in the
eluting gradient. Typically, 0.1 to 0.4 or 0.6 M KCI in 50
mM Tris-HCl was used. The presence of 1 mM 2-ME
was necessary to prevent erratic elution behavior. Under
these conditions some cadmium eluted in the column wash
(s 30%). The remainder eluted as two CdBP bands at
22 to 25 mSiemen (BP-I) and 40 to 44 mSiemen (BP-II).
The relative amounts of cadmium in the two BPs was
sufficiently variable that in some cases BP-I was the
major species and sometimes the minor. Temperatures
between - 35 and - 80°C prevented degradation of these
BP preparations during storage.

Relationship of BP Cytosolic to Medium Cd
Levels
To assess the function of the BP, one must determine

(1) whether it is constitutive or inducible or both; (2) at
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Table 1. Effects of added 2-ME and Cd2" on cytosolic metal distributions.a

Added reagents Cytosolic Cdlugb Cytosolic Zn/,g
2-ME/mM Cd+2/4lg HMW BP VLMW HMW BP VLMW

0 0 29 82 17 >200
1 0 38 63 20 30 152
1 130 79 169 49 17 7.3 121

a Cells were grown for 6 days in media containing 5 ,g Cd/L. Results are normalized for a 250 mL culture. 2-ME was added to the homogenate;
Cd2" to the cytosol.
bHMW = high molecular weight; VLMW = very low molecular weight.
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FIGURE 1. DEAE-Sephadex A-25 chromatography of CdBP from
Euglewa gracilis. The applied sample (333 Rg of Cd2" in 9.8 mL
was eluted with a 150 to 600 mL KC1 gradient buffered at pH 8.6
with 50 mM Tris-HCl and containing 1 mM 2-ME: (0) Cd; (A)
conductivity

what levels of Cd2" does induction occur; and (3) whether
the presence of the BP is toxic or protective to the cell.
The ability to bind cadmium is the only known function
and the most unique and easily determined property of
the BP Therefore, the presence of BP in cells grown in
Cd-free media was sought by addition of Cd2+ to the
cytosol before fractionation. When the added Cd2+ was
40% of the total cellular zinc, a substantial amount of Cd
bound to high molecular weight species (0.097 [Lg/108
cells). A distinct Cd band at Kd = 0.67, close to the
normal elution profile of CdBP, was present (Fig. 2a and
Table 2) and contained most of the cadmium. When the
Cd/Zn ratio was 1.6, the high molecular weight Cd spe-
cies remained constant, while the band at 0.67 became
a shoulder on a large very low molecular weight band of
Cd, Kd = 0.88 (Fig. 2b). Interestingly, the amount of
high molecular weight cadmium is comparable to the
amount found after in vivo exposure to high levels of
Cd2+ in the media. The formation of the band at Kd =
0.67 suggests the presence of apo-BP in the cell cytosol.
When cells were trown in media containing 0.4, 1.3, and
4.7 ,ug/mL of Cd +, the cytosol of the cells from the two
lower concentrations contained no measurable amounts
of CdBP (Fig. 3). Only at the highest level did the Cd
Appear in the BP fractions. At the lowest levels of Cd2 ,
the cytosolic Cd appears exclusively in the high molecular
weight bands, which have Cd/Zn mole ratios of 0.1 and
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FIGURE 2. Sephadex G-75 chromatography of cytosol after in vitro
addition of (a) 0.4 Cd/Zn and (b) 1.6 Cd/Zn, based on total cytosolic
zinc content. 50 mM Tris-HCl buffer, pH 8.6; (a) 2.0 mL sample
and 4.0 mL fractions; (b) 5.0 mL sample and 3.8 mL fractions.

0.4. There is clearly no CdBP present in the cytosol. For
the higher concentration, which yields the CdBP, the mole
ratio is 0.9. (Note that Fig. 3 is plotted as ,ug/mL and
not in molar units.) Possible explanations of these ob-
servations are (1) the BP may only be inducible by high
levels of Cd2" in the cell or external media or (2) the BP
may have a weak affinity for Cd+ and may bind it only
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Table 2. Distribution of cytosolic zinc and cadmium (limole/108 cells) of Euglena gracilis grown in media with controlled cadmium
levels and after in vitro addition to homogenates.

Cadmium added Cadmium, pmole/108 cells Zinc, ,mole/108 cells
Homogenate,

Media, ,ug/mL Cd/Zn HMW BP VLMW HMW BP VLMW
0.4 0 0.01 a a 0.8 a 0.21
1.3 0 0.03 a a 0.07 a 0.27
4.7 0 0.11 0.33 a 0.12 a
0 0.46 0.097 0.10 a 0.023 a 0.28
0 1.6 0.11 0.31 a 0.031 a 0.19

a Below the limits of detection.
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FIGURE 3. Sephadex G-75 chromatographic profiles of cytosol of cells
exposed for 6 days to 0.4 (top), 1.3 (middle), and 4.7 (bottom) ,ug
Cd/mL added to the media. For each sample equal amounts of cy-
tosolic protein were applied. Fraction volumes 4.4 (top), 3.9 (mid-
dle), and 4.1 mL (bottom). Conditions as in Fig. 2.

after stronger binding sites in the hmw fractions are
saturated.

Reaction with EDTA
Recent work on mammalian MTs has established that

these proteins are dynamic and reactive entities (11,16-
18) in contrast to the earlier view that they are inert
metal-sequestering agents (10). A variety of ligands,
competing metals, and electrophiles are able to effect
displacement of metals from metallothioneins. Since the
Euglena gracilis BP appeared to be more labile than MT
and to differ in characteristic properties such as size and

charge, EDTA was used to probe its reactivity. Rate
constants for the CdMT reaction with EDTA are known
(16).

Samples of the Sephadex G-75 BP preparation were
reacted with a 0.4 mM EDTA solution. Since the EDTA
is present in large excess, pseudo-first-order kinetic
treatment was used to determine the reaction order with
respect to cadmium bound to the protein. The semilog-
arithmic plots of absorbance versus time yielded two
steps in pseudo-first-order rate constants of 4 + 3 x
10-4 sec ' and 7 ± 2 x 10-5 sec -'. Approximately one-
third of the cadmium reacts in the fast step and two-
thirds in the slow step. Thus both steps have a depen-
dence on the CdBP:

ratef = kf[CdBP]
and

rate, = k,[CdBP]
These data establish that EDTA reacts more rapidly

with the CdBP than the mammalian MT, for which the
pseudo-first-order rate constant under comparable con-
ditions (1 mM EDTA) shows a single step with a rate
constant of 2-4 x 10-6 sec- 1.
The slow step observed here is an order of magnitude

faster than for mammalian MTs and the fast step is two
orders of magnitude faster. These data provide striking
quantitative confirmation of the qualitative observation
of the labilty of Cd in this protein.

pH Titrations
The thiol group of cysteine residues, which are ex-

pected to play a major and possibly exclusive role in metal
binding, lose their protons upon binding cadmium. Thus,
pH titrations can be used to assess the strength of metal
binding:

Kb
CdBP +nH+ = H BP+n2 + Cd2+

For mammalian MTs, the half-titration point (i.e., the
pH at which half the bound metal is displaced by protons)
is 4.5 for Zn2+ and 3.2 for Cd2+ (19). Aliquots of the BP
were subjected to progressively smaller pH values and
quickly fractionated at that pH (Fig. 4). By pH 5-6, the
half-titration point was reached. At pH 3, which is close
to the half-titration point of MT, the cadmium is com-
pletely displaced from the BP
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FIGURE 4. Effect of pH on CdBP Aliquots (1.0 mL) of CdBP were

adjusted to the pH of the column, incubated 10 min, then chro-
matographed over Sephadex G-25 using 100 mM phosphate buffer.

The stoichiometry ofprotons bound per Cd2" displaced
is not known, and therefore, the binding constant cannot
be calculated quantitatively, but the qualitative result,
the much higher pH of the half-titration point, indicates
a much weaker thermodynamic interaction between the
BP and cadmium. Thus, the Euglena gracilis BP has an
affinity for Cd that is much lower than the value of Kb
= 7 x 1014 estimated for CdMt (19).

Radioimmunoassay
Isolated samples of CdBP-I and CdBP-II, which were

shown to give only single bands by polyacrylamide gel-
electrophresis, were subjected to competitive radioim-
munoassay according to published methods (12,13). In
this technique, a radiolabeled 125I-rat liver MT and the
increasing amounts of the competing ligand are assayed
with antibodies raised against rat liver MT. The results
of assaying Euglena CdBP-I and CdBP-II and, as a con-
trol, a mixture of rat liver MT-I and MT-II is shown in
Table 3 and reported as the fraction Y of bound 125I1
labeled MT for various concentrations of competing li-
gand. The amount of the rat liver MT required to achieve
Y = 0.50 was 0.94 pmole as determined by regression
analysis. In contrast, using 100 pmole of CdBP-I or
CdBP-II yielded Y = 0.89 and Y = 0.98, respectively.

Thus, the CDBPs do not effectively compete with the
radiolabeled antigen, and there is negligible cross-reac-
tivity of the Euglena BPs with antibodies to mammalian
MTs.

CdBP Synthesis in Dark-Grown Cells
Euglena are heterotrophic organisms which can grow

under illumination or in the dark. Because much of the
previous work on zinc deficiency in this organism was
done in the dark, we also examined their ability to gen-
erate CdBP when grown under these conditions. Figure
5 shows the CdBP band which results from 6 days of
growth with Cd2+ (5 ,g/mL) in the media and without
illumination. The zinc and cadmium distribution of con-
trol and cadmium-exposed cells are compared in Table
4. The cadmium in the high molecular weight band (180
nmole/108 cells) was marginally more than that observed
in light-grown cells, and 85% of the cadmium (960 nmole/
108 cells) was in the CdBP band. No cadmium was de-
tected in the low molecular weight region. The distri-
bution of zinc was altered, compared to the control cells,
by a dramatic increase in the very low molecular weight
zinc pool, 105 versus 1080 nmole/108 cells. Figure 4 shows
that a similar but not so dramatic increase occurred with
illuminated cells grown at comparable Cd levels.

Cytosolic Copper
Experiments were undertaken to determine whether

high levels of copper in the media would act like cadmium,
inducing a BP, or like zinc, appearing as a very low mo-
lecular weight species. Cells were grown for 10 days in
media containing 10 pug/mL of added Cu2+ and attained
a density of 5 x 106 cells, comparable to the density of
cells in normal media after 5 to 6 days (5). Three bands
of copper are evident after fractionating the cytosol over
Sephadex G-75 (Fig. 6). The copper bound to the high
molecular weight fractions greatly exceeded the zinc con-
tent: 180 versus 15 nmole/108 cells. The biggest pool of
copper (300 nmole/108 cells), however, was in the region
characteristic ofmetal-binding proteins and accounted for
43% of the cytosolic copper. A third major band was
present in the very low molecular weight region and ac-
counted for 32% of the copper. No zinc was bound to the
CuBP and only a very small amount was present in the
very low molecular weight region.

In additional experiments where cells were grown for
4 days on media containing 5 to 10 ,ug/mL ofadded copper,
the concentration of copper in the high molecular weight
region again greatly exceeded the zinc content, and the
majority of the zinc was in the BP region. There was,
however, no very low molecular weight copper band, and
the very low molecular weight zinc was depleted in the
cells on 5 ,ug/mL of copper and absent from those on 10
,ug/mL.
Thus, copper does apparently induce and bind to some

species of cytosolic protein similar in size and elution to
the CdBPs. However, unlike cadmium-exposed cells, in
which the very low molecular weight peak of zinc is com-
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Table 3. Radioimmunoassays: fraction of .2.I-labeled rat MT-I angiten bound (Y) as a function of competing ligand.a

Y at competing antigen amount, pmole
Competing agent 0.1 1 10 100 1000 10000

CdBP-I 0.98 0.89 0.88
CdBP-II 0.98 0.99
CdBP (G-50) 1.03 1.03
50/50 Rat MT-I and MT-II 0.87 0.49 0.41
aValues of responses with 50/50 mix of Rat MT-I and MT-II as competitor derived from standard curve [linear-log regression relating to

response Y to Q (log pmole competing antigen)]: Y = 0.490-0.377 Q. SEM of Y values greater than 0.90 is ± 2%.

E 14 DARK-GROWN CELLS
5 ,ug/ml Cd, 6 DAYS
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FIGURE 5. Sephadex G-75 chromatographic proffle of (0) cytosolic

Zn and (0) Cd from cells grown without mlumination for 6 days in

media containing 5 ,ug Cd/mL. Applied sample: 2.5 mL. Fractions

3.4 mL. 50 mM Tris-HCl buffer, pH 8.6.

parable to or larger than that for control cells, the very

low molecular weight zinc band is diminished by copper

exposure.

An unexpected observation in the course of this study

was that the cytosol ofthe copper-exposed cells was grey-

ish-black in color. This contrasts with the light green color

of the cells grown in normal media or with 5 ,ug/mL of

Cd. On exposure of the cytosol to air, the color fades,

and eventually the green color of normal cells is obtained.

The EPR spectra of frozen samples of the grey-black

cytosol are almost featureless, suggesting that Cu(I) is

present as the sample is oxidized by air exposure, with

concomitant loss of the grey-black color, a characteristic

signal for Cu(II) is apparent after 1 hr and very intense

after 5 hr. The loss of the black color is apparently due

to oxidation of some unidentified Cu(I) species to copper

(II).

Discussion

As metal-binding proteins in lower organisms are in-

vestigated in greater detail, it becomes increasingly clear

that they are not simply homologues of mammalian MTs,
but a diverse and complex array of small proteins and
peptides, varying in structure, chemical reactivity and
physical properties. For example, in rainbow trout
(Salmo gairdneri), four binding proteins have been iden-
tified: two resemble MT and are present only after in-
jecting cadmium into the fish and two are present after
exposure to environmental cadmium but do not resemble
MTs (6). The blue-green algae Synechoccus (sp) and the
green alga Chlorella ellipsoidea each had only a single
form of BP (8,20), in contrast to the inevitable two (and
possibly more) isoproteins of mammalian MTs. Oligo-
meric cadmium-containing aggregates of cysteine-rich
penta- and heptapeptides (cadystin A and B, respec-
tively) have been isolated from the fission yeast Schizo-
saccharomyces pombe after cadmium exposure (9).
Thus, the results presented here demonstrating signifi-
cant differences in physiological behavior, structure, and
chemical reactivity between the Euglena BP and mam-
malian MTs are not unexpected.
Turning first to its physiological significance, the BP

could be isolated with an appreciable zinc content only
after exposure to high levels of cadmium (> 4.7 ,g/mL)
and with the use of 2-ME in the preparation. Following
this finding, we repeated our earlier efforts to isolate a
ZnBP (5) by exposing the cells to 20 ,ug/mL of zinc in
the media and using 2-ME to stabilize any resulting
ZnBP during the preparation. The results, however, were
negative. While the possibility of losing zinc from the BP
during isolation attempts cannot be unambiguously elim-
inated, the variety of conditions employed, including an
anaerobic atmosphere of N2 previously reported (5), are
sufficiently varied and stringent to support the conclusion
that in Euglena the very low molecular weight zinc pool
is a real phenomenon. Under zinc deficient conditions the
very low molecular weight Zn is analogous in behavior to
zinc MT of Ehrlich ascites cells (5). At present, there is
no evidence to support a role for the BP in zinc metab-
olism. The formation of CdBP when media cadmium lev-

Table 4. Comparison of cytosolic metal distribution for control and Cd-exposed cells grown in the dark.

Zinc, nmole/108 cells Cadmium, nmole/108 cells
Media Cd, ,g/mL HMW BP VLMW HMW BP VLMW

oa 66 c 105
5b 120 c 1080 170 960 c

a Harvested on day 6.
b Harvested on day 7.
'Below the limits of detection.
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FIGURE 6. Sephadex G-75 chromatographic profile of (C) Cu and (0) Zn in the cytosol ofEuglena gracilis grown for 10 days in media containing
10 ,g Cu/mL. 50 mM Tris-HCI buffer, pH 8.6, was used to elute the column.

els were high, but its absence at 1 ,ug/mL or less of Cd2"
are indicative of a role during acute cadmium exposure,
but not during low level, chronic exposure. This result
could reflect induction of Cd2" only at very high media
and intracellular Cd2" levels. Alternatively, it may result
from a low affinity ofthe BP for Cd2 . When intracellular
concentrations are low, cadmium is bound almost exclu-
sively to high molecular weight species. It only appears
in the BP fractions after a level of ca. 11 ,umole Cd/108
cells has been achieved. In support of the proposal that
the BP has a low affinity for Cd2+ is the finding that in
vitro addition of Cd2+ leads to a saturation of high mo-
lecular weight binding sites at levels of Cd2+ (10-11
nmole/108 cells) similar to those achieved in vivo, and to
the presence ofCd in the BP fraction. These data suggest
that the BP is constitutive and may have other biological
functions or at least be involved in other equilibria which
render it less available to bind intracellular Cd2 .

The thermodynamic, kinetic and structural properties
observed here substantiate and extend our previous find-
ings (5) that the Euglena BP is smaller and more nega-
tively charged than metallothioneins. Table 5 compares
and contrasts the properties of the BP and mammalian
MTs. Clearly, although the BP is a cysteine-rich metal-
binding protein, it has a unique set of chemical and phys-

ical properties and is not simply a homologue of the MTs.
Whereas half the cadmium of MT is displaced at ap-

proximately pH 3, that point is reached by pH 5 to 6 for
the BP (Fig. 4), indicating that much lower concentra-
tions are necessary to compete for the Cd-binding sites.
Thus, the pH titration provides direct chemical evidence
that the equilibrium constant, Kb for the reaction

Kb

Cd2+ + H"BP = CdBP + nH+

is lower than the value 7 x 1014 which is characteristic
of mammalian MTs (19).

Similarly, the EDTA reaction provides evidence of in-
creased kinetic lability for the CdBP Extraction of Cd
from CdMT or Cd,ZnMT by 1 mM EDTA results in a

pseudo-first-order rate constant of 2-4 x 10-6 sec-1,
which accounts for over 90% of the total reaction (16).
The slow and fast reactions of the Euglena BP, comprise
two-thirds and one-third of the cadmium removed and
are 10 and 100 times faster, respectively. These differ-
ences in the rates of reaction must arise from substantial
structural changes between the MT and the CdBPs. The
two steps for the Euglena BP may be due either to the
two forms of BP, one more labile than the other, or to two
classes of binding sites present in both BP-I and BP-II.

Table 5. Comparison of Euglena BP and mammalian metallothioneins.

Property Euglena CdBPs Metallothioneins
Apparent molecular weight -8000 10,000 daltons
Molecular weight ? 6000
DEAE elution (conductivity mS) 20-40 mS 6-10 mS
Cysteine content High 33-34%
1/2 titration pH 5-6 3-4
EDTA pseudo-first-order 4 x 10' sec-1 (-33%) Very fast (10%)

rate constants (% reacting) 7 x 10-' sec'1 (-67%) 2-4 x 10-6 sec-' (90%)
[EDTA] [0.4 mM EDTA] [1 mM EDTA]

Inducibility High (Cd2+) Low (Cd2+)
Forms CdBp-I and CdBP-II MT-I and MT-II
Cross-reactivity to rat liver MT antibody No Yes

84



CADMIUM-BINDING PROTEIN FROM ALGAE 85

Further studies to resolve this question are in progress.
The radioimmunoassay of BP-I and BP-II against rat

liver metallothionein antibodies indicated essentially no
cross-reactivity. The antigenic sites of metallothionein
are sequential. The immunodominant site involves resi-
dues 20-26; a secondary site involves residues 1-5 at the
(acetylated) amino terminal. The antigenicity of various
metallothioneins is not significantly altered by dramatic
structural changes such as replacing zinc or cadmium
with gold (15) or by removal of metals and oxidation of
the thiols to cysteic acid groups (18). Thus, the absence
of cross-reactivity of the Euglena BP-I and BP-II to the
antibodies cannot be attributed to conformational differ-
ences and most likely indicates that the antigenic site is
not present. Interestingly, the immunodominant deter-
minate sequence includes two to three lysines, and the
absence of these and perhaps other lysines from the BP
sequence may contribute to the increased negative
charge found by ion-exchange chromatography.
The high conductivity required for DEAE elution, the

lower apparent molecular weight, and the absence of
cross-reactivity with MT antibodies all point to sub-
stantial differences in amino acid sequence for the BPs.
One would expect on this basis that the sites of metal
binding would differ from those of the three- and four-
metal cluster (21) of MT. Alterations in the metal-binding
structures should give rise to changes in the equilibrium
binding constants for Cd and to the rates of reactions
with competing metal ligands, as have been reported
here.

Finally, changes in the structure and reactivity may
indicate a physiological role of the CdBP in Euglena that
is very different from that of MT in mammalian kidney
and liver. The failure of Cd2+ to bind to the BP upon low
level (< 1 [xg Cd/mL) exposure supports the hypothesis
of altered function. Also, the failure of zinc to bind, except
in the presence of bound cadmium, may also reflect an-
other function. Clearly, continuing efforts to unravel the
structure, chemical reactivity and function of the BP are
warranted not only by their intrinsic interest, but also
because of the light they can shed on MT structure and
function in relation to human metal metabolism and
health.
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